Part T

DYNAMICS OF FLEXIBLE MULTI-BODY MECHANISMS AND MANIPULATORS

An Overview

Steven Dubowsky Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA

INTRODUCTION

- FLEXIBILITY CAN BE A MAJOR LIMITATION TO THE PERFORMANCE OF HIGH PERFORMANCE CONVENTIONAL Α. MACHINE SYSTEMS.
 - 1. Noise
 - 2. VIBRATION
 3. WEAR

 - 4. PREMATURE FAILURES
 - 5. DESTABILIZE CONTROL
 - B. THE CURRENT STATE-OF-THE-ART OF ROBOTIC MANIPULATORS IS LIMITED BY THE EFFECTS OF SYSTEM FLEXIBILITY.

THE STATE-OF-THE-ART OF THE ROBOT DYNAMICS AND CONTROL[†]

*NOW:

(CURRENT COMMERCIAL SYSTEMS)

*IN 5 YEARS (LABORATORY DEMONSTRATED)

*IN 10 YEARS (CURRENT RESEARCH ISSUES)

 † This chart defines the time frames for the review of the state of the art for robotic systems which follow and provide the basis for the future projections

NOW

1. ROBOTS ARE:

- * Not Robots
- * Individual Arms on Fixed Bases, or
- * Simple Guided Vehicles
- 2. MECHANICAL DESIGN:
 - * Heavy, Rigid and Slow
- 3. SENSORS:
 - * Simple Joint Transducers
 - * Primitive 2-D Vision
 - * Rudimentary Force Sensors
- 4. ACTUATORS:

 - * Heavy and Low Power
 * Troublesome Transmissions
- 5. END EFFECTORS: Binary

 - * With Simple Sensors
 - * Special Purpose Tools
- 6. MOTIONS:
 - * Not Dynamic "Quasi-Static"
 - * Speeds Below Structural Resonances
- 7. CONTROL:
 - * Primitive Linear Joint Control
 - * Low Performance
 - * No Absolute Position Accuracy
 * Only Static Force Control

 - * No Dynamic Trajectory Planning

IN 5 YEARS

- 1. ROBOTS ARE:
 - * Still Not Robots
 - * 2 or 3 Fixed Arms Working Together
 - * Some Mobility
- 2. MECHANICAL DESIGNS:
 - * Rigid, Light and Faster
- 3. SENSORS:
 - * Still Mostly Joint Transducers * Some VLSI 2-D Vision

 - * Simple End-Point Sensors
- 4. ACTUATORS:
 - * Lighter Weight and Improved * Direct Drives
- 5. END EFFECTORS:
 - * Some Controlled Mobility
 - * Position, Force and Limited Tactile Sensing
 - * Commercial Tools for Some Tasks
- 6. MOTIONS:
 - * Control Permits "Dynamic" Performance
 - * Speeds Below Structural Resonances
- 7. CONTROL:
 - * Combined Position and Force
 - * "Work-Space" Rather Than of the Joints
 * Insensitive to Environmental Changes

 - * Optimal Dynamic Trajectory Planning

IN 10 YEARS

- 1. ROBOTS MAYBE:
 - * Robots
 - * Coordinated Multiple and Mobile Arms
 - * Self-Contained with Walking Ability
- 2. MECHANICAL DESIGNS:
 - * Very Light, flexible and fast
- 3. SENSORS:
 - * New Sensor Technologies for Control
 - * High Speed 3-D Vision
 - * High Resolution Tactile Sensors
- 4. ACTUATORS:
 - * High Peformance
 - * New Technologies Muscle Types
- 5. END EFFECTORS:
 - * Sensitive and Dexterous Hands
 - * Intelligent Motion and Sensing
 - * Intelligent Tools for Specific Tasks
- 6. MOTIONS:
 - * Dynamically Tuned
 - * Flexibility Exploited for Performance
- 7. CONTROL:
 - * Issues of Control and Performance in Most Cases Will Move to a Higher Level.
 - * Questions of Control of Individual Robot Actions Will be Transparent.